UNSPECIFIED Some Results for Drawing Area Proportional Venn3 With Convex Curves

نویسندگان

  • Peter Rodgers
  • Jean Flower
  • Gem Stapleton
  • John Howse
چکیده

Many data sets are visualized effectively with area proportional Venn diagrams, where the area of the regions is in proportion to a defined specification. In particular, Venn diagrams with three intersecting curves are considered useful for visualizing data in many applications, including bioscience, ecology and medicine. To ease the understanding of such diagrams, using restricted ‘nice’ shapes for the curves is considered beneficial. Many research questions on the use of such diagrams are still open. For instance, a general solution to the question of when given area specifications can be represented by Venn3 using convex curves is still unknown. In this paper we study symmetric Venn3 drawn with convex curves and show that there is a symmetric area specification that cannot be represented with such a diagram. In addition, by using symmetric diagrams drawn with polygons, we show that, if area specifications are restricted so that the double intersection areas are no greater than the triple intersection area then the specification can be drawn with convex curves. We also propose a construction that allows the representation of some area specifications when the double intersection areas are greater than the triple intersection area. Finally, we present some open questions on the topic. Keywords--Venn diagrams; diagram layout

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drawing Area-Proportional Venn-3 Diagrams with Convex Polygons

Area-proportional Venn diagrams are a popular way of visualizing the relationships between data sets, where the set intersections have a specified numerical value. In these diagrams, the areas of the regions are in proportion to the given values. Venn-3, the Venn diagram consisting of three intersecting curves, has been used in many applications, including marketing, ecology and medicine. Whils...

متن کامل

Area-Proportional Drawings of Intersecting Families of Simple Closed Curves

A FISC, or family of intersecting simple closed curves, is a collection of simple closed curves in the plane with the properties that there is some open region common to the interiors of all the curves, and that every two curves intersect in finitely many points or arcs. Let F be a FISC with a set of open regions R. F is said to be area-proportional with respect to weight function ω : R → R if ...

متن کامل

Convex drawings of intersecting families of simple closed curves

A FISC or family of intersecting simple closed curves is a collection of simple closed curves in the plane with the properties that there is some open region common to the interiors of all the curves, and that every two curves intersect in nitely many points. Let F be a FISC. Intersections of the curves represent the vertices of a plane graph, G(F), whose edges are the curve arcs between vertic...

متن کامل

Visualizing set relations and cardinalities using Venn and Euler diagrams

In medicine, genetics, criminology and various other areas, Venn and Euler diagrams are used to visualize data set relations and their cardinalities. The data sets are represented by closed curves and the data set relationships are depicted by the overlaps between these curves. Both the sets and their intersections are easily visible as the closed curves are preattentively processed and form co...

متن کامل

Drawing Area-Proportional Venn and Euler Diagrams

We consider the problem of drawing Venn diagrams for which each region’s area is proportional to some weight (e.g., population or percentage) assigned to that region. These area-proportional Venn diagrams have an enhanced ability over traditional Venn diagrams to visually convey information about data sets with interacting characteristics. We develop algorithms for drawing area-proportional Ven...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009